Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharm Res ; 41(4): 819-831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443630

RESUMEN

PURPOSE: Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS: Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS: According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION: In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratas , Animales , Microinyecciones , Inyecciones Intradérmicas , Sistemas de Liberación de Medicamentos/métodos , Agujas , Membranas Artificiales , Administración Cutánea
2.
Pharm Res ; 40(8): 1953-1963, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165148

RESUMEN

PURPOSE: Hollow microneedles (hMNs) have been gaining attention as a tool to enable the intradermal (i.d.) administration of pharmaceutical products. However, few reports have examined the effect of administration volume on distribution in the skin and pharmacokinetics parameters after i.d. injection. In the present study, a model middle molecular weight compound, fluorescein isothiocyanate dextran (M.W. 4,000, FD-4), was selected, and blood concentration-time profiles after i.d. and subcutaneous (s.c.) injections with different administration volumes were compared. METHODS: FD-4 solution was injected i.d. using a hMN or injected s.c. with a 27 G needle. Pharmacokinetics and dermatokinetics of FD-4 were analyzed using a compartment model. The skin distribution of iodine, as an X ray tracer, was used to evaluate drug disposition. RESULTS: With the administered drug assumed to be absorbed from the broad injection site into blood vessels in the upper and lower dermis by rapid (krapid) and slow (kslow) first-order absorption rate constants, respectively, better agreement of observed and theoretical values was obtained. Furthermore, the fraction, F, of the administered dose absorbed with krapid decreased with the increase in injection volume after i.d. injection, although the pharmacokinetics parameters were almost the same regardless of administration volume after s.c. injection. CONCLUSION: The drug distribution in the skin may be related to the obtained pharmacokinetics parameters suggested that the number of needles in the MN system and the total administration volume should be considered in designing hMN systems. The present results provide useful information that may support effective drug delivery with hMNs.


Asunto(s)
Agujas , Piel , Inyecciones Intradérmicas , Piel/metabolismo , Absorción Cutánea , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Administración Cutánea , Microinyecciones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...